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ABSTRACT

Given the growing significance of network performance, it is crucial

to examine how to make the most of available network options and

protocols. We propose ECON, a model that predicts performance of

applications under different protocols and network conditions to

scalably make better network choices. ECON is built on an analytical

framework to predict TCP performance, and uses the TCP model as

a building block for predicting application performance. ECON infers

a relationship between loss and congestion using empirical data

that drives an online model to predict TCP performance. ECON then

builds on the TCP model to predict latency and HTTP performance.

Across four wired and onewireless network, ourmodel outperforms

seven alternative TCP models. We demonstrate how ECON (i) can

be used by a Web server application to choose between HTTP/1.1

and HTTP/2 for a given Web page and network condition, and (ii)

can be used by a video application to choose the optimal bitrate

that maximizes video quality without rebuffering.

CCS CONCEPTS

• Networks→ Transport protocols; Application layer proto-

cols; Network performance modeling.
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1 INTRODUCTION

For many Internet applications, especially Web and video applica-

tions, the underlying network is a key performance bottleneck. Poor

networks cause large delays [41, 65] and require multiple round

trips for object transfer [67, 71]. Since Web and Video account for

over 70% of Internet traffic [69], there have been considerable ad-

vances in new network protocols, most notably HTTP/2 [38] for

the Web, and DASH [22] for video applications.
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The key problem is that an application developer cannot easily

choose the best protocol to use. For example, prior work has shown

that for a Web application, the choice between using HTTP/2 and

HTTP/1.1 is not straightforward [81]; Similarly, the DASH [22]

protocol is used by a video player to fetch the video segment with

the maximum bitrate, given the network throughput. However, as

shown by the spate of recent works [6, 44, 72, 83, 85], predicting

the network throughput, and in-turn choosing the right bitrate for

the video segment is non-trivial.

Empirically evaluating all possible protocol and parameter op-

tions under different workloads and network environment condi-

tions is infeasible. Worse, making the wrong choice can severely

impact application performance, by as much as 4.5×, as we show in

§6. What is needed is an accurate application performance model

to predict the right network protocol or parameter to use. Unfortu-

nately, this is challenging because:

• Network performance is unpredictable [39], making it difficult to

model higher layer application performance which depends on

the network. Further, end-points do not have enough visibility

into the dynamic network congestion at intermediate router

buffers due to cross-traffic.

• The application layer interacts with the transport layer in non-

intuitive ways [81]. Consequently, application performance de-

pends not only on the application protocol, but also on the trans-

port protocol, and their interactions.

In this work, we present ECON, a model that accurately and scal-

ably predicts application layer performance. We show how ECON

can be used by Web and Video applications to decide the best proto-

col or parameters at runtime. Since the performance of higher-layer

applications depends on the performance of TCP [81], the core idea

in ECON is to first model the underlying TCP and then use this as

the building block for modeling application performance.

The key insight in ECON’s TCP model is to combine analytical

modeling with empirical data. Related works that model TCP fall

into two categories: analytical or history-based. Analytical models

make assumptions [17, 20, 24, 63] about packet loss that do not

always hold true and hurts model accuracy (see §5). On the other

hand, existing history-based models [34, 44, 72] predict throughput

empirically based on historical data alone, ignoring the effect of

TCP. History-based throughput predictions are inaccurate (see §5)

because the network throughput is, in fact, regulated by the TCP

congestion control algorithm.

ECON first builds an analytical model based on the congestion con-

trol algorithm employed by the underlying TCP. However, rather
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than make assumptions about network losses, ECON drives the ana-

lytical model with real-time empirical measurements1. The empirical

measurements are made at the end points, which serve as a proxy for

inferring end-to-end network congestion without requiring explicit

information about the intermediate traffic.

In this paper, we derive the model for TCP Cubic [32], which is

the default TCP variant on Linux and Mac OS, and also show how

our model can be extended to TCP Reno [2]. Because ECON explicitly

takes into account the slow-start phase, it can also predict TCP

performance for short flows. Note that our goal is to model network

performance under existing choices to empower practitioners, and

not to develop new TCP or HTTP variants.

We build on ECON’s TCP throughput model to predict latency as

well as the performance of HTTP/1.1 and HTTP/2. To this end, ECON

extends the continuous flow model derived for TCP to finite flows.

In the case of HTTP, since ECONmodels the performance of parallel

TCP connections, it can accurately compare the performance of

HTTP/1.1 (which uses parallel connections) and HTTP/2 (which

multiplexes requests on a single connection).

We evaluate ECON’s TCP model with over 600 hours worth of

experiments spread over several months across (1) four different

wired networks, including those within and across different Azure

public cloud sites, (2) a wireless network on the US East Coast, and

(3) under different TCP variants (Cubic [32] and Reno [2]). We com-

pare ECON with seven alternative models — three analytical models

and four history-based models (including those employed in the

last few years [72, 83]). Our results consistently show that our mod-

eling error is substantially lower than other models, often by more

than 60%, even under dynamic network conditions. Our median

throughput modeling error is 6%–16% across all experiments.

ECON also accurately predicts the latency under HTTP/1.1 and

HTTP/2 with a mean error of 3% and 7.4%, respectively. By predict-

ing the workload and network conditions under which HTTP/2

outperforms HTTP/1.1 and vice-versa (§6), ECON allows practition-

ers to quickly decide which option to employ. Importantly, ECON

makes these predictions without requiring extensive experimenta-

tion, unlike prior work [81].

To demonstrate the practical end-to-end applicability of ECON,

we show (i) a Web server can leverage ECON to choose between

HTTP/1.1 and HTTP/2 to improve the Web page load time, and (ii)

how a video server (or client) can choose the optimal bitrate using

ECON. In both cases, the application server collects empirical data

for the connection to the client to build the model. The server then

scalably predicts application performance using ECON for different

protocols/parameters and helps pick the best option to employ.

For Web page loads, we show that, by taking the page load de-

pendency structure into account, ECON improves page load time by

36%–56%, across different network conditions and Web pages. Like-

wise, for video applications, ECON’s throughput prediction allows

us to pick the optimal bitrate in most cases across different network

conditions.

1Hence the name ECONmodel, that stands for Empirically-augmented COngestion-aware
Network model.

Figure 1: Illustration of the client-server environment that

ECON operates in.

2 OVERVIEW AND MOTIVATION

To provide the context and scope of our work, we first discuss the

network setup and envisioned use cases for ECON. We then provide

the necessary background on TCP and highlight the need for ECON

in light of existing works.

2.1 Target Network Environment for ECON

We envision ECON to be used in a client-server set up, where the

client initiates the request but most data is served from the server,

as shown in Figure 1. ECON predicts the network performance for

the client-server pair by empirically analyzing existing network

conditions on the server side. This empirical data is then used to

drive the ECON model predictions at runtime. Note that there is

nothing inherently server-specific in ECON; we choose to analyze

the network conditions on the server side since the server performs

the bulk of the networking in our set up.

ECON does not make any assumptions about the location of the

bottleneck along the server-client link. Instead, by monitoring the

performance at the end-point, ECON infers the network conditions

on the server-client link. If there is no existing flow between the

server and the target client, ECON can obtain estimates of the pa-

rameters based on the server’s existing or recent connections to

other clients in the geographical vicinity of the target client, similar

to recent works [42, 72].

We show how ECON can be extended for different applications.

For example, for the adaptive video streaming use case in §7, ECON

predicts the performance under different bitrates and informs the

server about the highest bitrate that can be currently used to deliver

seamless video streaming to the client. This information can also

be relayed to the client, in case the client-side video player needs

to make the bitrate decision. Similarly, for the Web use case in §6.4,

ECON predicts the web page load time under HTTP/1.1 and HTTP/2,

and relays the optimal decision to the client.

2.2 Background on TCP

Transmission Control Protocol or TCP is the widely used protocol in

the transport layer [27]. One of the key features of TCP is congestion

control. If the TCP sender sends too many packets, the intermediate

router buffers overflow leading to packet loss. If the TCP sender

sends too few packets, the network is under-utilized. TCP regulates

the amount of data it sends in one round trip time (RTT) using

the congestion window or cwnd parameter. cwnd is in the unit of

packets.

TCP regulates cwnd using a congestion control algorithm. We

discuss loss-based algorithms here and discuss other variants in §8.
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Figure 2: Illustration of TCP Cubic congestion window size

(cwnd) evolution over time.

A loss-based TCP protocol starts in the slow-start phasewhere cwnd

is increased exponentially until a slow start threshold is reached or

a loss occurs. Then, TCP switches to congestion-avoidance phase.

In this phase, TCP increases cwnd less aggressively, until there

is a loss. The exact cwnd regulation depends on the TCP variant

employed, but the rise and fall of cwnd is typically periodic.

Figure 2 shows the evolution of cwnd under TCP Cubic [32], the

most popular TCP variant. The figure shows cwnd in terms of RTTs

for the Azure testbed. After slow-start, TCP increases the cwnd via

the equation:

cwndcubic = C(t − K)3 +Wmax , (1)

where C is a constant, K =
3
√

Wmax β
C , t is the time elapsed from

the previous packet loss, andWmax is the cwnd size just before the

last packet loss. When a loss occurs (as indicated by triple duplicate

acknowledgements) the cwnd drops by a multiplicative factor of

(1 − β), with 0 < β < 1. If the loss occurs due to timeout, which is

considerably rare, TCP goes back to the slow start phase.

Some TCP variants regulate cwnd using the Additive Increase,

Multiplicative Decrease (AIMD) algorithm. This algorithm increases

cwnd linearly in each round. But when a loss occurs, it rapidly re-

duces cwnd using a multiplicative factor. For example, TCP Reno [2]

increments cwnd by 1 in each RTT, and drops cwnd by a factor of

2 upon a loss.

2.3 Existing TCP models

Researchers have developed analytical [10, 17, 20, 24, 59, 63], and

data-driven [34, 44, 72, 83] models to characterize TCP throughput

(and/or latency) as a function of various network parameters. Both

sets of models have certain shortcomings, as we discuss next.

Analytical TCP models typically work by tracking the number

of packets sent in each RTT, depending on the cwnd evolution,

as dictated by the underlying congestion control algorithm. The

above-cited analytical models only focus on TCP Reno [2], and

all but one model focus only on the congestion avoidance phase.

Further, such analytical models typically make simplifying assump-

tions that do not always hold in practice, such as: (1) assuming

that the loss probability can be modeled either as a constant or as

some known distribution, e.g., Poisson. Figure 3 shows the empiri-

cal relationship between loss probability and cwnd for one of our

real-world testbeds. Clearly, loss probability is not a constant, and

also depends on the number of parallel connections employed; this

is important when comparing HTTP/1.1, which uses parallel TCP
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Figure 3: Empirical results for loss probability (p) vs. conges-

tion window size (cwnd) for the Azure network under TCP

Cubic for different number of parallel connections.

connections, and HTTP/2, which only uses a single TCP connection;

(2) assuming that the starting congestion window sizes are identically

distributed. However, starting congestion window size varies across

flows, especially when TCP connections are reused. While the ef-

fect of starting congestion window is amortized for bulk transfers,

the impact is significant for short transfers; and (3) focusing on

static network conditions where the parameter values, such as loss

probability, are assumed to be stable. However, network conditions

can be very dynamic in practice [19, 34, 40, 78]. In fact, for video

streaming, today’s media players routinely employ adaptive bitrate

streaming to adjust to variations in network conditions [42, 72].

History-based, data-driven models, on the other hand, leverage

historical observations of network performance to predict future

performance. However, by relying only on historical data, such

models limit their responsiveness. For example, when the RTT is

small, the congestion control algorithm results in a very dynamic

cwnd, and consequently throughput evolution, which is hard to

predict using historical observations alone. Further, historical ob-

servations might not be accurate predictors for future performance

as they do not account for dynamic events, such as a very recent

packet loss (which will result in an abrupt drop in throughput), or

anticipated events, such as an imminent loss due to the addition of

new connections or an inflated cwnd.

The above shortcomings of analytical and data-driven models

hurt the model accuracy in practice, motivating the need for a better

modeling framework.

3 ECON TCP MODEL

This section presents the core of ECON–an accurate, congestion-

aware TCP throughput model. ECON combines an analytical model

with empirical data on network congestion. The TCP model is the

foundation for application layer modeling that we discuss in the

next section.

3.1 Model intuition

We first describe a high-level overview of the ECON TCP model. Fig-

ure 2 shows the evolution of the congestion window size, cwnd (in

packets), under TCPCubic [32] during the slow-start and congestion-

avoidance phases. We model the throughput for these phases sepa-

rately.

ECON leverages the periodicity of the cwnd behavior at steady

state to predict throughput of the current triple duplicate period
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(TDP). The TDP is defined as the period between a starting conges-

tion window and the first loss, indicated by triple duplicate ACKs.

During this period, the cwnd rises and then falls abruptly at the

end, due to a loss.

The throughput of a TDP can be estimated as the amount of

data sent during the period divided by the length of the period,

using renewal reward theory [21]. For example, starting from a

starting congestion window size of scwnd packets in Figure 2, the

throughput is the number of packets sent between scwnd andWmax

divided by the length of the TDP.

The key challenge is in predicting when the loss will occur.

Unlike prior work, ECON does not assume that loss probability is

constant. In fact, as indicated in Figure 3, the loss probability will

change at each point in the TDP curve because the loss rate depends

on the cwnd. To this end, ECON takes as input (i) the empirical

relationship between loss probability and cwnd, and (ii) the starting

congestion window value, scwnd, to estimate the expected number

of packets sent before the loss occurs. We next describe how we

obtain the relationship between loss probability and cwnd.

3.2 Relationship between loss probability, p, and
congestion window size, cwnd

To derive the relationship between loss probability, p, and cwnd,

we monitor the cwnd values of existing TCP flow(s) and mark the

cwnds where loss occurs. Losses are inferred based on the drop

in cwnd values and the deterministic nature of the TCP window

evolution. p(cwnd) is the loss probability at cwnd and is estimated

as the total number of losses recorded at cwnd divided by the total

packets sent at that cwnd, over the monitoring period. Some cwnd

values may not be encountered during a monitoring period; in that

case, we set the loss probability for this cwnd to that of the closest

cwnd where loss is encountered.

In detail, the process of deriving p(cwnd) is as follows. The server

maintains: (1) a hashmap A which records the frequency of each

cwnd value encountered when sending a packet; and (2) a hashmap

Bwhich records the frequency of the cwnd value encountered when

a loss occurs. By dividing the values in B by A, we get p(cwnd). The

p(cwnd) function consumes about 5KB in memory.

We infer p(cwnd) by observing losses at the end point, e.g., the

server, so the effect of cross-traffic at intermediate routers is implic-

itly taken into account. We also do not need to explicitly model the

effect of queue management techniques, such as RED [13, 60].

p(cwnd) relationship for real-world networks: Figure 3 shows

the empirically obtained p(cwnd) curve based on one hour of mon-

itoring for Azure network under TCP Cubic (more details in §5).

Note that the measurements are between Azure VMs so the traffic

likely does not leave Azure’s private backbone to take public In-

ternet routes. For 1 connection (red curve), we did not encounter

losses before cwnd≈800 and after cwnd≈2800, so we instead use

the closest non-zero loss probabilities for these points, resulting in

the flat horizontal line segments.

Clearly, the p(cwnd) relationship is not monotonic. In general,

the loss rate initially decreases with an increase in cwnd (likely

because a smaller cwnd suggests poor network conditions), but

then the relationship is reversed due to congestion.

TDP triple duplicate period

cwnd congestion window size

scwnd starting congestion window size

npc number of parallel connections

N number of packets sent in a TDP

M number of packets before loss is detected

X number of RTTs in a TDP

p(x) loss probability at congestion window size x

Wi size of the congestion window before ith loss

Table 1: Parameters and terminology used in this paper.

The p(cwnd) relationship also depends on the number of parallel

connections (npc), as shown in Figure 3, since the bandwidth is now

shared between more connections. We typically observe smaller

cwnd values for higher number of parallel connections, due to

the increased congestion experienced by each connection. In our

experiments, we capture this empirical relationship, p(cwnd, npc),

by attributing losses for a given connection to the specific cwnd

and the specific npc value at which the loss occurs. While a more

accurate p(cwnd, npc) model can be developed by also looking at

the cwnd value of the other (npc - 1) connections, the resulting

model will be quite complex.We find that our simpler model suffices

for accurate predictions.

We obtain similar curves for the other network setups in our

experiments, including those over WiFi. We have made all the

p(cwnd) experimental data, for all networks, publicly available

on a Github repository [26]. We find that the temporal stability

of the p(cwnd) function depends on the network type. Generally,

the p(cwnd) function is more stable in cloud networks (the Azure

network, in our case, see §5.1) and less stable in the wild.

3.3 Modeling TCP Cubic throughput

We now provide an overview of our throughput modeling approach

for TCP Cubic, which is the most widely used TCP variant (the de-

fault version on Mac OS and Linux). We will then discuss our model

extension for TCP Reno. We defer the exact mathematical deriva-

tions to Appendix A. The model parameters and random variables

we employ in our analysis are listed in Table 1 for reference.

ECON takes as input the empirical p(cwnd, npc) relationship and

the starting congestion window size, scwnd. Then, the throughput

B is given by:

B(scwnd,p(cwnd,npc)) = E[N ]/((E[X ] + 1) · RTT ), (2)

where N denotes the number of packets sent in a TDP and X de-

notes the number of RTTs until the first loss is detected. The total

throughput is obtained by summing the throughputs of all parallel

connections.

The goal now is to derive N and X, which depend on the inputs,

scwnd and p(cwnd,npc), and the cwnd evolution, determined by

the Cubic congestion control algorithm.

Let M denote the index of the first lost packet; then, (N-M) is

the number of packets sent after the first loss occurs but before it

is detected. We first derive the expected number of packets before

the first packet loss, E[M], and then use it to derive the expected

number of packets sent in a TDP, E[N].
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Deriving M, the index of the first packet loss : The expected

number of packets before the first packet loss, E[M] =
∑
i i ·Pr (M =

i), where Pr (M = i) is the probability that the first loss occurred

at packet i . When there is no loss, the cwnd increases every RTT

according to Eq. (1). For now, let npc = 1 and the time corresponding

to the beginning of this TDP be t0 = 0.

The probability that the very first packet is lost is simply the

probability that a loss occurs at the starting congestion window

scwnd; thus, Pr (M = 1) = p(scwnd). The probability that the first

loss is at the second packet is similarly given by Pr (M = 2) =

(1 − p(scwnd)) · p(scwnd), since p(cwnd) is the loss probability for

any packet in the congestion window of size cwnd. Thus, for any

ith packet sent in the first congestion window (of size scwnd), we

have Pr (M = i) = (1 − p(scwnd))i−1 · p(scwnd).

If the first loss happens after the first congestion window, we

have to take into account the change in loss probability, p, since p

depends on cwnd. In general, if the loss happens at themth packet

of the nth congestion window, we have

M =

(
n−1∑
j=1

cwndj

)
+m, and

Pr (M ) =

(
n−1∏
j=1

(1 − p(cwndj ))
cwndj

)
(1 − p(cwndn ))

m−1p(cwndn ),

where cwndj is the cwnd in the j
th RTT, given by cwndj = C((j −

1) ·RTT −K)3+scwnd/(1−β), via Eq. (1); note that cwnd1 = scwnd .

We then obtain E[M] by conditioning over M and generalizing to

parallel connections (see Appendix A).

Deriving N, the number of packets sent in a TDP: The number

of packets sent in a TDP, N, is the number of packets sent before

a loss is detected (M), except the lost packet, and the additional

packets sent before the loss is detected by the sender (one RTT).

We thus have:

E[N ] = (E[M] − 1) + cwndE[X ], (3)

where E[X] is the expected number of RTTs between scwnd and

the first loss. We use a similar approach to derive E[X] as we did for

E[M] (see Appendix A). The intuition is that each RTT corresponds

to one congestion window. Once E[X] is derived, we can easily

obtain E[N] using Eq. (3).

Finally, we obtain the throughput B according to Eq. (2); see

Appendix A for details. In §4.1 we describe how we estimate the

bandwidth in practice based on the above modeling. Note that

ECON’s model is not in closed-form, thus limiting our ability to ana-

lyze the throughput model via simple visual inspection of the final

expression. Also, ECON leverages more available information than

alternative analytical models, like PFTK. However, by using empiri-

cal data, ECON enables much more accurate network performance

predictions, as we show in §5.

3.4 Extension to TCP Reno

The above model can be extended to other loss-based TCP variants;

we now consider TCP Reno as one example. Under Reno, the cwnd

increases by 1 each RTT and decreases to half the value in the

event of a loss. Specifically, the cwnd at the jth RTT is cwndj =

scwnd + j − 1.

As before, the cwnd evolution has a repeating pattern, so we

can focus on an arbitrary TDP to estimate the throughput. Our

modeling approach for Reno is similar to Cubic, and is thus omitted.

The key difference when modeling the throughput under TCP Reno

is that the cwnd evolution that dictates the p(cwnd) function and

the derivation of E[M] and E[N] is now based on Reno’s AIMD

algorithm.

3.5 Modeling TCP Slow start

Similar to the congestion avoidance phase, the estimated through-

put in the slow start phase, E[Bs ], is a function of (i) the number

of packets sent in slow-start before a loss occurs or the slow start

threshold is reached, Ns , and (ii) the evolution of cwnd during slow

start:

E[Bs ] = E[Ns ]/((E[Xs ] + 1) × RTT ), (4)

where Xs is the length of the slow start phase.

Let the cwnd at the beginning of slow start be icwnd (10, in

our setup). Then, by the cwnd evolution during slow-start, for the

kth RTT, cwnd = icwnd × 2k−1, since cwnd doubles every RTT.

If there are npc parallel connections, then the loss probability for

any packet in this RTT is p(icwnd × 2k−1,npc). We use this loss

probability to derive Ns and Xs , and consequently Bs , via Eq. (4).

The modeling for slow start proceeds similarly as for Cubic, and is

thus omitted.

4 ECON

The TCP modeling is the building block over which we build ECON’s

application layer prediction. In this section we discuss how ECON is

used in practice and then describe the application-layer models.

4.1 Using the model in practice and adapting to
network changes

To use the model in practice, one first empirically obtains the

p(cwnd) function as described in §3.2. Such a bootstrapping step is

required for all history-based prediction models [34, 44, 72, 83]. The

p(cwnd) relationship can be obtained from an ongoing or recent

flow between the server and client. Alternatively, the p(cwnd) func-

tion can be computed for the few seconds of the object transfer and

then used for the remaining transfer, as in the case of long-running

flows such as video. If neither of these work, e.g., for short-running

flows, then we can leverage the clustering technique used in recent

work [42, 72] as follows. For cases where the p(cwnd) function

needs to be computed at a server that connects to several thou-

sands of clients, the idea is to cluster connections based on the

geographical location of the clients and other features. The p(cwnd)

relationship for a new client can then be estimated as the median

or mean p(cwnd) of other connections in the cluster that the client

is closest to.

In practice, the p(cwnd) relationship can change dynamically

for several reasons, such as failures, rerouting along the path, or

increased traffic due to colocated flows on the path [9, 47]. We

use a “sliding window” approach to monitor network conditions

periodically, including RTT, losses, and the number of packets sent

at each congestion window, over a certain sliding window size.

We then periodically update the model parameters, including the

p(cwnd, npc) function.



IMC ’19, October 21–23, 2019, Amsterdam, Netherlands Yi Cao, Javad Nejati, Aruna Balasubramanian, and Anshul Gandhi

(a) HTTP/1.1 creates parallel TCP
connections.

(b) HTTP/2 multiplexes over a
single connection.

Figure 4: HTTP/1.1 versus HTTP/2.
Using the empirical measurements, we estimate expected through-

put using Eq. (2). Note the infinite summation over cwnd values. In

practice, we rarely see cwnd values greater than a few thousands,

so we cap the summation.

4.2 Application modeling: Latency

Our first step towards application-layer modeling is to model the la-

tency of a TCP flow. So far, we modeled the throughput, B. Consider

data of size x to be transmitted at time t on a single connection.

Latency is the time taken to transmit data of size x , and we estimate

this latency as a function of B:

L = x · RTT /(B ·MSS), (5)

where RTT is the Round Trip Time and MSS is the Maximum

Segment Size.

Recall that the throughput B is a function of scwnd and the

p(cwnd) curve. If the data transfer is part of an existing flow, thenwe

set scwnd to be the cwnd at that time t , cwndt . We use the p(cwnd)

relationship of the existing flow, and use Eq. (2) to estimate the

throughput. If the data transfer is not part of an existing flow, we use

our slow-start model (§3.5) and set scwnd to be the initial cwnd set

by TCP. The p(cwnd) curve is obtained using the bootstrapping step

described in §4.1. Finally, the throughput is estimated via Eq. (4).

We next extend the latency estimation to multiple connections

in the context of HTTP.

4.3 Application modeling: HTTP

Both HTTP/1.1 and HTTP/2 work over TCP at the transport layer.

In both cases, the client sends an HTTP request for an object and

the server sends an HTTP response with the requested object.

Figure 4(a) shows an example HTTP/1.1 persistent connection;

HTTP/1.1 creates a TCP connection for each object. Once the ob-

ject is received, the client requests the next object. HTTP/1.1 can

create parallel TCP connections to fetch objects simultaneously.

Most browsers limit the number of parallel connections per server

to six [84].

The difference between HTTP/1.1 and HTTP/2 is in how the TCP

connections are leveraged. Figure 4(b) shows an example HTTP/2

connection. In HTTP/2, the client creates a single TCP connection

and requests multiple objects on this single connection. The multi-

plexed requests are called streams, and HTTP/2 has a limit on the

number of streams [11].

We extend our (continuous flow) TCP model to HTTP by consid-

ering finite flows since HTTP applications work with finite, discrete

objects. To this end, our HTTPmodel proceeds in epochs, where the

length of each epoch is the estimated RTT. Inputs to our model are

the size and number of objects being requested and, for HTTP/1.1,

the number of parallel connections (npc in our model).

HTTP/1.1 model: In the first epoch, say starting from time ts , one

object is assigned to each of the npc parallel TCP connections; for

the purposes of modeling, the assignment order of objects is not

important. We then use our per-connection throughput estimation

from Eq. (2), along with npc and the p(cwnd) empirical relationship

to predict the number of epochs needed to complete the first (or

fastest) transfer.

After this transfer, the next outstanding object is assigned to this

connection in the subsequent epoch; if there are no outstanding

objects, we reduce the number of parallel connections and update

the p(cwnd, npc) function. This process continues until all objects

are transferred, say at epoch ending at time te . The predicted latency

is then (te − ts ).

HTTP/2 model: In the case of HTTP/2, we only have one con-

nection. We treat all outstanding objects as one combined request

that must be transferred over the one connection. We thus use

our throughput model from §3.3 to predict the transfer time. Un-

like HTTP/1.1, no RTTs are wasted when a new stream replaces a

completed stream in HTTP/2.

5 ECON TCP MODEL EVALUATION

We evaluate our TCP throughput and latency modeling accuracy

under four different real world networks for: (i) TCP Cubic, (ii) TCP

Reno, and (iii) a WiFi network.

5.1 Methodology

Networks and experimental setup. We conduct experiments on four

real-world networks:

(1) Azure: This is a collection of five networks, with the sender

(VM) in each case hosted in the East US location of Azure public

cloud and the receiver (VMs) hosted in the Japan East, East

US 2, West US 2, Central US, and South Central US locations

of Azure [57]. The average RTT within Azure is 10–200ms de-

pending on the receiver location. Unless specified otherwise,

we report results for the receiver in Japan East (RTT ≈ 200ms).

(2) Southeast: The receiver (VM) is located in a CloudLab site at

Clemson University and the sender (bare-metal) is located at

Stony Brook University with average RTT of 23ms.

(3) Northeast: The sender (bare-metal) and the receiver (bare-

metal) are both located at Stony Brook University with an aver-

age RTT of 50ms.

(4) Long-distance: This is a collection of networks with the sender

(bare-metal) hosted at Stony Brook University and the receivers

located at University of Washington and Korea, resulting in

average RTTs of 60–200ms. Unlike the above networks that are

partially part of a cloud data center, the Long-distance network

is, to the best of our knowledge, over commodity links.

When running our experiments, we leave the network param-

eters in the default state. For example, TCP SACK and Delayed

ACK are enabled. We find that the prediction error is not affected

much by the SACK and Delayed ACK settings. The only parame-

ters that we do change are the Linux TCP read and write buffer

sizes, which we set to the maximum allowable value under the OS,

(231-1) bytes)); this is done so that the data transfer is not limited

by small TCP buffers. For the two cloud-based networks, Azure and
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Southeast, we observe relatively low loss rates. We thus use TC [1]

on the sender side to experiment with different loss probabilities

for these networks.

Data collection. All senders and receivers run the UbuntuOS (v14.04.5

or later). We use iPerf [76] to send TCP traffic from sender to

receiver. For each network, we run multiple 1-hour experiments

across several days over a period of 12 months with varying num-

ber of TCP connections (from 1 to 10); in total, we have about 660

hours worth of experimental data. Each experiment begins with

the slow-start phase.

We use the Linux TCP probe module [3] to record the congestion

window size (cwnd) when sending packets and estimate the p(cwnd,

npc) function as described in §3.2.

Alternative models for comparison. We compare our model accu-

racy with three formula-based (FB), or analytical models, and four

history-based (HB), or data-driven models.

• The classic PFTK model [63].

• The model proposed by Chen et al. [20], denoted as Chen06,

that corrects errors in the classic PFTK model relating to over-

prediction of the send rate.

• Themodel proposed byDunaytsev et al. [24], denoted asDunayt-

sev07, that predicts Reno’s throughput by accounting for fast

retransmit/fast recovery and slow start.

• Last Sample (Sun16-LS) [72], a simple History-Based (HB) model

that predicts throughput based on the most recently observed

throughput value.

• Exponentially weighted moving average (He05-EWMA) [34],

a parameterized HB model that predicts throughput based on

previously observed throughput values.

• Holt-Winters (He05-HoltWinters), also a parameterized HB

model that is well suited to non-stationary processes, and predicts

throughput by capturing the trend in previously observed values,

as detailed in He at al. [34].

• Harmonic Mean (Yin15-HM) [44, 83], a HB model that pre-

dicts throughput based on the harmonic mean of past observed

throughput values.

The PFTK model [63] was published before 2004, when a draft of

the Cubic variant was first introduced [66]; as such, the first three

(PFTK-based) models only apply to TCP Reno. We thus compare

our Cubic model with the other four HB models for evaluation. For

TCP Reno model evaluation, we compare with all seven alternative

models.

Sensitivity analysis. For a fair comparison, we enhance the three

analytical models [20, 24, 63] to use the same sliding window ap-

proach as our model (§4.1). The four HBmodels already use a sliding

window approach.

For each model, we run a sensitivity analysis across different

sliding window sizes, or training size (number of seconds of histor-

ical data to use), and the update frequency (how often to slide the

window). We vary the sliding window size between 10s and 100s;

values above 100s result in stale data and values less than 10s result

in high computation overhead. For formula-based models (PFTK,

Chen06, Dunaytsev07, and ECON), we find that a large window size

works better, so we set the window size to 100s for these models.

For HB models, a smaller sliding window works well, so we set it

to 10s. For all models, an update frequency of 10s works well.

The He05-EWMA and He05-HoltWinters also have two addi-

tional parameters, α and β , that need tuning. Our sensitivity analy-

sis showed that α = 0.8 and β = 0.8 work best for our testbed, so

we use these parameter values.

5.2 Cubic & Reno throughput prediction

We now evaluate the throughput prediction error for TCP Cubic

and Reno. We predict the throughput for the next 1s.

CDF of TCP Cubic throughput prediction errors: Figure 5

shows the CDF of Cubic throughput prediction errors for all mod-

els and all networks. These results are based on 22,000 prediction

windows across all networks. We compute the prediction error by

comparing our predictions with the observed experimental values.

Our model significantly outperforms all other models for all net-

works. Our median throughput prediction error forAzure, Southeast,

Northeast and Long-distance is about 11.5%, 15.5%, 9.2%, and 11.6%,

respectively. By comparison, the best median throughout prediction

error for alternative models is 36.1%, 67.8%, 28.5% and 33.5%, for the

four networks. In terms of average error, ECON reduces the relative

prediction error compared to the best alternative model by 85.7%,

92.1%, 72.2% and 64.1%, for the four networks, respectively.

In general, we find that for networks with small RTTs, Sun16-LS

has the lowest errors and He05-HoltWinters has the largest errors,

among alternative models. Note that in Figure 5(b), for the Southeast

network, the prediction error is large for alternative history-based

models. This is because this network has a small RTT and so Cubic’s

congestion control results in a very dynamic cwnd evolution, which

is hard to capture using historical observations alone.

To investigate whether the TCP read and write buffer sizes affect

our prediction accuracy, we also evaluate our predictions for TCP

Cubic when using the system default TCP buffer sizes (4MB for

write and 6MB for read) in the Northeast network. Our median

throughput prediction error in this case is 9.6%, whereas the best

median throughput prediction error for alternative models is 34.9%.

CDF of TCP Reno throughput prediction errors:We evaluate

the prediction error for TCP Reno over all four networks and com-

pare with all seven alternative models as they apply to TCP Reno.

Figure 6 shows the CDF of TCP Reno throughput prediction

error for all networks. These results are based on 44,000 predic-

tion windows across all networks. As before, ECON significantly

outperforms all seven alternative models. Our median throughput

prediction error for Azure, Southeast, Northeast and Long-distance

is about 6.1%, 11.3%, 10.6%, and 8.6%, respectively. By comparison,

the best median throughout prediction error for alternative models

is 23.4%, 22.7%, 20.1% and 24.8%, for the four networks.

Sensitivity to model parameters: We also experiment with a

smaller sliding window (training set) size of 10s for all models. Re-

sults are qualitatively similar, with ECON improving the throughput

prediction error compared to the best alternative model by 48% and

39%, respectively, for Cubic and Reno.

Finally, in addition to the 1s prediction window used above, we

also evaluate ECON’s performance under a 5s and 10s window. Again,

ECON outperforms all alternative models we experiment with. The

average reduction in prediction error afforded by ECON over the
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(a) Azure network.
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(b) Southeast network.
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(c) Northeast network.
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(d) Long-distance network.

Figure 5: CDF of TCP Cubic throughput prediction (for the next 1s) error under all eligible models and under all networks.
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(a) Azure network.
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(b) Southeast network.
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(c) Northeast network.
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(d) Long-distance network.

Figure 6: CDF of TCP Reno throughput prediction error under all models and under all networks.
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Figure 7: Throughput prediction error under changing net-

work conditions. ECON outperforms other models.

best alternative model is about 50% and 38% for Cubic and Reno,

respectively, under 5s prediction, and about 43% and 23% under 10s

prediction.

Analyzing model efficacy for different scwnd and npc set-

tings:We find that ECON outperforms other models for all starting

congestion window (scwnd) values. However, the improvement is

more pronounced for smaller and larger scwnd values. For example,

under the Northeast network, for scwnd < 50, ECON lowers the me-

dian throughput prediction error range from 158–264% under the

best alternative model (Yin15-HM) to about 15%. For scwnd > 700,

ECON lowers the median throughput prediction error range from

58–61% under the best alternative model (He05-HoltWinters) to

about 21%. Results are similar for other networks.

This is because the alternative models assume that the loss prob-

ability (p) is independent of cwnd, whereas we find that p is higher

than average when cwnd is either small or large (see Figure 3).

We also evaluate ECON by analyzing its prediction accuracy for

different number of parallel connections (npc). Our model outper-

forms other models irrespective of the number of parallel connec-

tions; further, our median error numbers are much lower, by about

41–76%, compared to the corresponding numbers for other models.

Network ECON EWMA H.Winters LS HM

Azure 10.4 35.5 56.4 29.6 31.5

SouthEast 13.1 59.0 83.0 59.6 63.9

NorthEast 8.7 25.4 34.1 26.5 28.1

Long-distance 12.5 34.3 59.2 26.7 34.3

Table 2: Median error (in %) for Cubic latency modeling.

Analyzing the effectiveness of the sliding window approach:

To evaluate the dynamic nature of ECON, we consider the Northeast

network running TCP Reno. We use TC [1] to change the RTT and

loss probability, p, to emulate varying network conditions.

We run a 10min experiment starting at t = 0min with a 100ms

RTT and p = 10−4. Then, every 2 minutes, we change the network

conditions as follows:

p = 10−4 → 10−3 at t = 2min,

p = 10−3 → 10−5 at t = 4min,

p = 10−5 → 10−4 and RTT = 100ms → 200ms at t = 6min,

RTT = 200ms → 50ms at t = 8min.

The experiment is stopped at t = 10min. As before, we predict the

throughput for the next 1s.

Figure 7 shows the median prediction error for each of the four

2-min intervals after a change in network conditions. We compare

with all other TCP Renomodeling alternatives. Overall, ECON results

in much lower prediction error, by about 56% on average, compared

to the other models across all four dynamic cases. Compared to the

best alternative model for each case in Figure 7, ECON improves the

median prediction error by about 32%, on average.

5.3 Latency prediction errors

An immediate application of our TCP throughput model is predict-

ing the latency of TCP flows. Table 2 shows the median latency

prediction error under TCP Cubic for all networks and all eligible
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Figure 8: Latency prediction error for different data size

ranges. ECON provides greater benefits for smaller data sizes.

models. These results are based on more than 5000 data transfer

experiments, with the data size in each transfer ranging from 1MB

to 100MB. While some of the alternative models, such as He05-

EWMA [34], only focus on throughput modeling, we extend their

models to also predict latency, similar to our model.

Our model consistently outperforms all other models for all

networks. The median latency prediction error of ECON under Cubic

is about 11%, whereas that of other models is about 43%. Results are

similar under TCP Reno, with the median prediction error across

all networks under ECON being around 10%, while that of other

models ranges from about 25% (for Sun16-LS) to 30% (for He05-

HoltWinters).

Figure 8 shows the median prediction error under TCP Reno for

the Southeast network broken down by data size to be transferred,

along with the 25%ile and 75%ile bars; we focus on Reno so we can

compare with all alternative models. The median latency prediction

error for ECON for the three ranges (<10MB, 10–50MB, >50MB) is

14.3%, 10.6%, and 8.9%, respectively. By contrast, the best alternative

model has median error of 28.9%, 18.2%, and 10.8%, respectively.

The improvement afforded by our model over other models roughly

decreases as the data size increases. This is to be expected as (i) we

use the predicted throughput of the first 1s interval as a proxy for the

entire transfer lifetime, (ii) unlike alternative models, we leverage

the scwnd value in ECON and find that throughput prediction is

more sensitive to scwnd at short timescales, and (iii) other analytical

models, such as PFTK, use steady-state analysis with constant loss

rates, which is well suited for bulk transfers but not short flows [63].

By contrast, ECON performs well for short transfers as well.

5.4 Modeling results for wireless network
For wireless experiments, we use the wired VM in the Southeast

CloudLab site as the sender and then set the receiver in theNortheast

to be on a wireless (WiFi) connection. We use 1 TCP connection

and run experiments for 5 hours.

Figure 9 shows the CDF of the latency prediction error under

TCP Reno (so we can compare with all alternative models); results

are similar under Cubic and for throughput modeling. Compared

to the best alternative model, ECON reduces the median prediction

error from 19.3% (PFTK) to 9.1%, and average error from 21.4%

(Yin15-HM) to 11.2%.

For the wireless network, the p(cwnd) plot continues to exhibit

a non-monotonic relationship (not shown here). However, due to

the larger RTT for wireless connections, we observe a narrower
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Figure 9: TCP Reno latency prediction error for a wireless

connection in the Southeast network.

range of cwnd values, resulting in lower errors across all models

compared to the wired networks.

Although we do not explicitly model RTOs (retransmission time-

outs), ECON still achieves high accuracy when RTOs are present. In

our wireless experiments, for example, the loss probability due to

RTOs is around 10−7. Despite these RTOs, ECON’s average prediction

error is only about 11% for the wireless testbed.

5.5 Modeling results for emulated last mile
networks

In this subsection, we evaluate ECON in a more realistic network

setting. Specifically, we emulate last mile networks in the Northeast

network with more representative bandwidth, RTT, and loss rates

using TC. We consider regimes with loss rates of 0.1% to 1%, RTT of

30ms, and bandwidth of 50Mbps. These chosen parameter values are

based on the public 4G-LTE data of T-Mobile [74] and Verizon [79].

We evaluate 3 different loss rates in the Northeast network: 0.1%,

0.5% and 1%. For each loss rate, we run an iPerf3 experiment for 1

hour. Figure 3 shows the median throughput prediction error for

each loss rate under ECON and other TCP Cubic modeling alterna-

tives. As before, ECON achieves much lower throughput prediction

error when compared to the best alternative model in all cases.

Loss Rate ECON EWMA H.Winters LS HM

0.1% 7.8 25.5 31.3 25.3 26.9

0.5% 15.3 21.9 24.6 22.5 20.9

1% 18.5 21.5 22.9 21.4 19.9

Table 3: Median error (in %) for Cubic in emulated last mile

networks (bandwidth=50Mbps, RTT=30ms).

6 WEB: HTTP/1.1 AND HTTP/2
We now (1) evaluate ECON’s latency prediction under HTTP/1.1

and HTTP/2, and (2) use ECON to help a Web application choose

between HTTP/1.1 and HTTP/2 for Web page loads.

6.1 Experimental setup
We evaluate ECON’s HTTP models by sending HTTP traffic between

a browser and a Web server in the Northeast network. We use the

Chrome browser (v63.0.3239.132) as client and an NginxWeb server

(v1.10.3) on Ubuntu 16.04.3 LTS OS. The browser and the Web

server support HTTP/1.1 and HTTP/2. For HTTP/1.1, we use the

default value of 6 parallel and persistent connections. For HTTP/2,

Nginx sets the default value of 128 maximum concurrent streams.
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Figure 10: HTTP/1.1 andHTTP/2 latencymodeling error for

different file sizes and loss rates. For the first three sets of

bars, the transfers completewithin theTCP slow start phase.

All objects are requested from a single server. We use TC [1] to

vary the network conditions. We configure the Chrome browser

to automatically request a certain number and size of objects, as

specified by the experiment.

6.2 HTTP prediction results
Figure 10 shows our latency modeling error for HTTP/1.1 and

HTTP/2 across 9 different experiments; we use ECON’s HTTPmodels

from §4.3 to predict the latency of transferring objects. In each

experiment, the browser requests 500 objects; we vary the object

sizes (10KB, 100KB, 1MB) and loss probability (0.005%, 0.01%, 0.05%)

across experiments. Our average modeling error for HTTP/1.1 and

HTTP/2 is 3.0% and 7.4%, respectively.

When fetching 10KB objects, both HTTP/1.1 and HTTP/2 take

about 50-150ms during which TCP remains in the slow-start phase.

This result shows that ECON can accurately predict performance

even when TCP is in slow start phase.

6.3 Predicting HTTP/1.1 versus HTTP/2

We now return to the key question we posed earlier—should we

use HTTP/1.1 or HTTP/2 for a given environment and workload.

We explore 16 different scenarios of workload and network condi-

tions by varying the object size (10KB, 1MB), loss probability (10−5,

10−4), number of objects (10, 500), and RTT (50ms, 200ms). For each

scenario, we predict the latency under HTTP/1.1 and HTTP/2 using

our models.

Figure 11(a) illustrates our prediction results as a tree diagram

that determines when HTTP/1.1 outperforms HTTP/2 and vice-

versa. In most cases, HTTP/2 has lower predicted latency compared

to HTTP/1.1. However, under high loss probability, high RTTs, and

large file sizes, HTTP/1.1 has lower latency. For all 16 scenarios,

our results are in agreement with the empirical results obtained by

prior work [81], but without requiring extensive experimentation.

Importantly, making the wrong choice between HTTP/2 and

HTTP/1.1 can increase latency by up to 4.6×, highlighting the

importance of accurate models. The average increase in latency,

across all 16 scenarios, when making the wrong choice, is about

264%.

6.4 Extending ECON to Web

Wehave shown above thatmaking the right choice betweenHTTP/1.1

and HTTP/2 is critical to performance. The next question is, how

(a) ECON prediction results for
HTTP/1.1 vs. HTTP/2.

(b) An example dependency graph for a
Web page load.

Figure 11: Decision tree and Web dependency graph.

can a Web application use ECON’s prediction to choose between the

two HTTP protocol choices.

Extending ECON’s prediction to the Web is challenging because

of the complexity of Web page loads. A Web page embeds tens of

objects of varying sizes. The objects are not all downloaded at the

same time, and the timing depends on other compute activities and

the dependencies between the objects [81]. This means that the

impact of using HTTP/1.1 and HTTP/2 for page load time is more

nuanced.

6.4.1 Use case in practice. The page load process starts when the

client browser requests the URL from the Web server. The server

parses the URL request and determines the set of objects that must

be fetched to load the Web page. This can be done by loading the

page prior to the request, ignoring personalization. The server also

computes the p(cwnd) relationship for the connection, employing

bootstrapping, if needed, as discussed in §4.1 and in prior works [42,

72].

Based on the set of objects in the Web page, the network infor-

mation, and the starting congestion window, the server runs an

emulation algorithm (discussed below) to predict the latency for the

page load under HTTP/1.1 and HTTP/2. The latency-minimizing

protocol choice is then relayed by the server to the client, along

with the requested HTML file. Our evaluations show that making

this decision incurs insignificant latency and does not affect the

page load process.

6.4.2 Predicting the Web page load time (PLT). Our general idea

is to deconstruct the page load process into object requests and

reconstruct it using ECONmodeling, based on the protocol to be used

(HTTP/1.1 versus HTTP/2) and the underlying network parameters.

Reconstructing the page load is tricky because of dependencies in

the page load process and the interspersed object load and compute

activities.

To account for dependencies between Web activities, the server

first determines these dependencies using tools such asWProfX [82].

Figure 11(b) illustrates the dependency graph for a simple example

Web page, showing the network activities (N ), compute activities

(C), and dependencies.

The emulation algorithm proceeds as follows: for the first set of

network object loads, we predict the latency of fetching the objects

under HTTP/1.1 and HTTP/2. We then shift the dependency graph

based on this latency as needed. We then calculate the time to trans-

fer the second set of objects depending on the first set of network

object loads, and so on. Note that such an emulation algorithm is

needed for Web page loads that have complex dependencies be-

tween objects, since we cannot simply divide the page size by the
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Figure 12: The average page load time of HTTP/1.1, HTTP/2,

and ECON under different loss probabilities.

throughput to get the page load time. If the next level is a compute

activity, we assume it takes a constant time, based on prior runs.

We continue this process until all activities are completed. We use

this completion time as our predicted page load time, PLT, which is

a common Web performance metric [14, 81].

6.4.3 Evaluation methodology. For evaluation, we choose 10 Web

pages from the HTTP Archive dataset [33] that exhibit a range of

number of objects per page. Specifically, we look at pages that have

20 to 500 objects/page, and randomly choose 10 pages from this

subset. The Web server is Nginx 1.10.3 and the client browser is

Chromium 73.0.3679.0. We use record and replay to load the Web

page from our local server [49].

We vary the loss probability to emulate 4 different network

conditions: p = 10−5; p = 10−4; p = 10−3; and p = 10−2. In all cases,

we set the RTT to 50ms. To obtain the ground truth, we load each

page using HTTP/1.1 and HTTP/2 under each network condition

10 times and use the median.

Loss probability (p) 10−5 10−4 10−3 10−2

Prediction accuracy 10/10 8/10 8/10 8/10

PLT improvement 44.8% 36.5% 55.6% 56.0%

Table 4: ECON prediction results, compared to the ground

truth, for the choice between HTTP/1.1 and HTTP/2 for 10

Web pages loaded under different loss probabilities.

6.4.4 Evaluation results. Table 4 shows the results of ECON’s pre-

diction for the choice between HTTP/1.1 and HTTP/2 compared

to the ground truth. For very low loss probabilities, ECON makes

the right choice between HTTP/1.1 and HTTP/2 for all 10 Web

pages. For other cases, ECON predicts the right protocol choice 80%

of the time. The PLT penalty when making the wrong choice can

be significant. We estimate the PLT when using ECON and when

making the wrong choice between HTTP/1.1 and HTTP/2. Across

different network conditions, ECON reduces PLT by 36%–56%, see

Table 4.

Figure 12 shows the average PLT, across all pages, under different

network conditions when using only HTTP/1.1 or only HTTP/2,

andwhen using ECON; results are normalized by the PLT under ECON.

Clearly, using only HTTP/1.1 or HTTP/2 hurts PLT significantly

under certain conditions.

ECON runs on a bare-metal Linux server with an Intel i9-7900X

CPU and 32GB of RAM. On average, for each Web page, the CPU

runtime of ECON is only 0.8% of the PLT. The maximum memory

overhead, when running the model, is only 0.4%.

7 IMPROVING ADAPTIVE VIDEO
STREAMING VIA ECON PREDICTIONS

Video traffic is quickly becoming the dominant traffic on the In-

ternet [23, 44]. Much of the video traffic today is delivered by

HTTP-based protocols such as HTTP Live Steaming (HLS) [37]

and Dynamic Adaptive Streaming over HTTP (DASH) [22]. Under

HTTP-based video delivery, the content provider hosts segments

of videos encoded at different bitrates. The higher the bitrate, the

larger the segment size. With adaptive streaming, the client (video

player) controls the video streaming quality by dynamically ad-

justing the bitrate to achieve the highest Quality-of-Experience

(QoE) [6]. The video player aims to maximize the quality of the

video (the bitrate served), while ensuring that the video segment

can be downloaded without rebuffering; the download time de-

pends on the network conditions. Since network conditions can

change dynamically during video delivery, recent work has argued

for better network throughput predictors to improve the quality of

video streaming [72, 83, 85].

This section investigates the efficacy of ECON’s network predic-

tions in determining the next video segment’s bitrate.

Experimental setup: For this case study, we consider a video

hosted by a server that comprises a number of segments, each

encoded at a different resolution, with higher resolution segments

having larger file sizes. Each segment corresponds to about 3.1s

of playback time; we denote this segment duration as T . We use

Nginx [4] as our video server and VLC as our video player client.

The video is streamed over the DASH protocol.We use theNortheast

network under TCP Cubic, and vary network parameters via TC.

Methodology:We consider midstream adaptation [72], meaning

that the video streaming is ongoing, andwewish to select the bitrate

for the next segment. For this use case, we state the QoE goal as

selecting the highest resolution (or bitrate) segment that can be

transferred from the server to the client in less thanT seconds (3.1s,

in our case). We assume that the video has been streaming for a

couple minutes, and so there is sufficient historical data for history-

based models and for ECON to compute the p(cwnd) relationship.

In our setup, the bitrate selection can be managed by either the

client or the server. While the video bitrate selection is usually

driven by the client, some recent works have demonstrated the ben-

efits of running ABR (adaptive bitrate streaming) algorithms on the

server side [6, 42]. If the server is managing the bitrate adaptation,

based on the ECON throughput model, the server decides on the

highest resolution (and file size) segment that can be completely

transferred in T secs. Alternatively, if the client is managing the

bitrate, then the server still makes the decision about bitrate as

discussed above and conveys the optimal resolution to the client.

The client can then make the bitrate decision based on this server

side notification.

Evaluation results:We consider networks with different RTT val-

ues under a high loss probability of 0.01 to evaluate the predictions

under lossy networks. In all cases, we first establish the ground

truth by playing the video under all supported resolutions (1080p,

720p, 480p, 360p) and identifying the highest resolution that allows

segments to be transferred in less than T (segment duration) sec-

onds. Then, using the various models, and ECON, we predict the
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RTT G Truth ECON EWMA HW LS HM

50ms 720p 720p∗ 720p∗ 720p∗ 720p∗ 720p∗

100ms 720p 720p∗ 720p∗ 360p 480p 720p∗

150ms 480p 360p 720p 360p 720p 720p

200ms 480p 480p∗ 720p 720p 720p 720p

Table 5: Optimal resolution predicted by different models.

highest resolution for the next segment using the model-specific

throughput predictions for the nextT seconds, starting from a mid-

stream position. Since video streaming under DASH uses a single

connection without multiplexing [61, 75], we adopt the ECON Cubic

model and other history-based alternatives.

Table 5 shows the highest resolution segment predicted under

different models, including the ground truth, for different RTT

values. We mark (using ∗) the correct decisions in each case. We see

that ECON makes the right decision (as ground truth) in 3 of the 4

cases; for the RTT=150ms case, ECON underpredicts the throughput,

resulting in a lower resolution segment being played (though the

segment is transferred successfully in the segment duration time).

By contrast, the best alternative models, He05-EWMA and Yin15-

HM, correctly predict the resolution only in the first two cases,

where RTT is not very high. Further, by using the actual scwnd

value to estimate the amount of data that can be sent in the next

segment duration, ECON’s predictions are more accurate.

8 RELATEDWORK

Existing TCP modeling work can be broadly categorized into (i)

formula-based (FB) and (ii) history-based (HB) models. FB predic-

tors rely on analytical models to characterize the TCP performance

as a function of the underlying network [17, 20, 24, 55, 59, 63, 64].

HB predictors, on the other hand, employ time-series based tech-

niques to forecast TCP performance based on historically observed

values [34, 73, 77].

FB models: The PFTK model [63] characterizes the steady-state

TCP (Reno) throughput as a function of loss probability (p) and

RTT. Newer models correct errors in PFTK [20] and accounting for

fast retransmit/fast recovery dynamics and slow start phase [24].

Cardwell et al. extend the PFTK throughput model to TCP latency

modeling [17].

Several other stochastic TCPmodeling approaches have been pro-

posed but assume specific distributions for packet losses [5, 7, 59].

Our empirical measurements show that loss probability depends on

cwnd, and does not seem to follow any predetermined distribution.

Goyal et al. predict the TCP throughput under a random loss

model (constant loss probability) based on monitored metrics sam-

pled at the congestions points on the path [31], but assume that

the congestion points in the link are known. Hespanha et al. [36]

propose a theoretical model for TCP performance when operating

under the drop-tail queueing policy. Fortin-Parisi and Sericola use

Markov chains to model TCP performance [28]; however, like PFTK,

they assume a fixed packet loss probability.

HBmodels: Exponential weighted moving average (He05-EWMA)

and Holt-Winters (He05-HoltWinters) [34] are HB models that

predict TCP throughput based on previously observed throughput

values, using their namesake time-series prediction techniques (see

§5.1). Last sample (Sun16-LS) [72] and Harmonic mean (Yin15-

HM) [83] are HB models that were employed in recent works [43,

44, 72, 83] to select the optimal bitrate in HTTP-based adaptive

video streaming.

Prior approaches have also employed learning algorithms, such

as Support Vector Regression, for TCP performance modeling [12,

48, 58]. However, such approaches typically require additional fea-

tures that are not always observable, such as queueing delay and

available bandwidth [58], and may also require non-trivial parame-

ter tuning [12].

Models for specific scenarios and variants: There are several

works that focus specifically on short flows [16, 56] but also assume

that losses are independent. For large flows, DualPats leverages

the correlation between TCP throughput and flow size to predict

performance [52]. There are also works that focus specifically on

derivingmodels for parallel TCP connections [8, 53] and forwireless

TCP connections [30, 45, 46, 62]. By contrast, we capture the TCP

performance under all the above scenarios.

Some models use router-level information to model TCP perfor-

mance under different AQM techniques such as RED [13, 50, 60].

However, router-level information is not easy to obtain. Instead, in

our work, p(cwnd) is derived by observing the end-to-end perfor-

mance, which incorporates the effect of different queue manage-

ment techniques.

Given that TCP has many variants, several studies [10, 25, 51,

64, 68, 70, 80] focus on modeling TCP throughput under different

congestion control algorithms, including Reno, NewReno, Vegas,

Cubic, Tahoe, and Fast. We show in §3 that our model can charac-

terize TCP performance under both Reno and Cubic. We believe

that our model can be extended to other TCP variants that have a

specifiable cwnd evolution; we will investigate such extensions as

part of future work.

A new TCP variant, BBR [15], is quickly gaining popularity.

BBR’s congestion control is not loss-based, and uses network prob-

ing to estimate cwnd. We are currently exploring how ECON can be

extended to such non-loss–based algorithms.

HTTP models: Zarifis et al. recently proposed an approach to es-

timate HTTP/2 performance [84]. However, this approach relies on

the availability of existing HTTP/1.1 traces. Heidemann et al. [35]

propose an analytical model for HTTP performance over different

networks and transport protocols; however, they assume no packet

loss. Finally, there are works that focus on HTTP traffic model-

ing [18, 54], and not throughput modeling, which is the focus of

our work.

Optimizing video performance: There have been recent works

that focus on optimizing video performance. Oboe [6] leverages

the piecewise stationarity of TCP throughput to automatically tune

ABR configurations in real-time. By contrast, ECON chooses the

optimal bitrate by predicting TCP throughput. Salsify [29] is a new

architecture that integrates a video codec and a network transport

protocol (UDP). We will look into how ECON can be integrated with

Salsify as part of our future work.

9 CONCLUSION AND FUTUREWORK

ECON presents a scalable and systematic model to easily evaluate the

performance of different network choices. The core of ECON is an
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analytical TCPmodel that adapts to dynamic network conditions by

empirically estimating the effect of congestion window on loss rate.

By leveraging the empirically-augmented model, ECON removes the

limiting assumptions made by current models. ECON’s application

level model for latency and HTTP is built on top of the TCP model.

Evaluation results across several networks show that our ECON

TCP model predicts throughput and latency with an error of 6%–

16%; the ECON HTTP predictions have an error of less than 8%.

We demonstrate ECON’s applicability to improving network perfor-

mance by (i) enabling aWeb server application to accurately choose

between HTTP/1.1 and HTTP/2 to reduceWeb PLT, and (ii) helping

a video server/client choose the optimal video bitrate to maximize

video quality without rebuffering.

While the focus of this paper was on developing the ECONmodel-

ing approach, we do plan to implement our model-driven solutions

for automatically selecting video bitrates and for switching between

HTTP/1.1 and HTTP/2. We expect the system to be implemented

primarily in the application; we envision the TCP model build-

ing and parameter acquisition to be performed at the OS, and the

application level analysis to be done at the application layer.
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A APPENDIX: MODELING TCP CUBIC

Deriving E[M]: Given the expression forM and Pr (M) from §3.3,

we derive E[M] =
∑
i i · Pr (M = i), by conditioning over M and

generalizing to c parallel connections:

E[M] =

∞∑
n=1

cwndn∑
m=1

�	
�	

n−1∑
j=1

C((j − 1) · RTT − K)3 +
scwnd

1 − β

��
 +m��
 ×

�	

n−1∏
j=1

(1 − p(cwndj , c))
cwndj ��
 (1 − p(cwndn , c))

m−1p(cwndn , c)

Deriving E[X ]: Since each RTT corresponds to one cwnd , we have

E[X ] =
∑∞
n=1 n · q(n, c), where q(n, c) is the probability of the first

packet loss occurring during the nth cwnd after the transfer starts.

To derive q(n, c), we first derive the probability that there is no

packet loss in a cwnd of size s given c connections as qs,c = (1 −

p(s, c))s . The probability of a loss in a cwnd of size s isqs,c = 1−qs,c .

Noting that q(n, c) = qcwndn,c ·
∏n−1

j=1 qcwndj ,c
, we obtain:

E[X ] =

∞∑
n=1

n(1 − (1 − p(cwndn , c))
cwndn ) ×

n−1∏
j=1

(1 − p(cwndj , c))
cwndj

Deriving E[N ]: Recall that E[N ] is the expected number of packets

sent during the TDP. Given E[M] and E[X ], we can derive E[N ]

using E[N ] = (E[M] − 1) + cwndE[X ] via Eq. (3).

Deriving B: Finally, the throughput can be derived, via Eq. (2), as

B = E[N ]/((E[X ] + 1) · RTT ).
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