Deconstructing the Energy Consumption of the Mobile Page Load

Yi Cao

Joint work with:
Javad Nejati, Muhammad Wajahat, Aruna Balasubramanian, Anshul Gandhi

Department of Computer Science, Stony Brook University
Overview

• Web browser — popular app on phones
Overview

• Web browser — popular app on phones
 - Page speed is critical to users
 - Several Web optimizations to improve performance
Overview

• Web browser — popular app on phones
 - Page speed is critical to users
 - Several Web optimizations to improve performance
Overview

• Web browser — popular app on phones
 - Page speed is critical to users
 - Several Web optimizations to improve performance

• However, often ignore a crucial factor — Energy
 - Mobile devices are severely constrained by energy
Overview

• Web browser — popular app on phones
 - Page speed is critical to users
 - Several Web optimizations to improve performance

• However, often ignore a crucial factor — Energy
 - Mobile devices are severely constrained by energy
 - Reducing page load time may not imply energy savings
Page Load Process

• Page load activities (*Components*)
 - *Computation*: Evaluating HTML, Javascript, CSS.
 - *Network*: Downloads.
Page Load Process

• Page load activities (Components)
 - **Computation**: Evaluating HTML, Javascript, CSS.
 - **Network**: Downloads.

• In Browser Profiling Tool — **WProf-M**
 - Decomposes the page load into different components
 - Provides **component type** and **time** information
Page Load Process

• Page load activities (Components)
 - Computation: Evaluating HTML, Javascript, CSS.
 - Network: Downloads.

• In Browser Profiling Tool — WProf-M
 - Decomposes the page load into different components
 - Provides component type and time information
Page Load Process

- Page load activities (*Components*)
 - **Computation**: Evaluating HTML, Javascript, CSS.
 - **Network**: Downloads.

- In Browser Profiling Tool — **WProf-M**
 - Decomposes the page load into different components
 - Provides *component type* and *time* information
Page Load Process

• Page load activities (*Components*)
 - *Computation*: Evaluating HTML, Javascript, CSS.
 - *Network*: Downloads.

• In Browser Profiling Tool — *WProf-M*
 - Decomposes the page load into different components
 - Provides *component type* and *time* information
Page Load Process

• **Page load activities (Components)**
 - **Computation**: Evaluating HTML, Javascript, CSS.
 - **Network**: Downloads.

• **In Browser Profiling Tool — WProf-M**
 - Decomposes the page load into different components
 - Provides **component type** and **time** information
 - **Page load time (PLT) is determined by the critical path**
Energy of the Page Load

• Reducing PLT may not imply reducing energy
 - While PLT depends on the critical path
 - Energy depends on all page load activities
Energy of the Page Load

• Reducing PLT may not imply reducing energy
 - While PLT depends on the critical path
 - Energy depends on all page load activities
Energy of the Page Load

- Reducing PLT may not imply reducing energy
 - While PLT depends on the critical path
 - Energy depends on all page load activities

Before Compression

After Compression

PLT ↓, However…
Energy of the Page Load

- Reducing PLT may not imply reducing energy
 - While PLT depends on the critical path
 - Energy depends on all page load activities

PLT ↓, However…
IMG processing time ↑ due to decompression
Energy of the Page Load

- Reducing PLT may not imply reducing energy
 - While PLT depends on the critical path
 - Energy depends on all page load activities

After compression, energy might ↑ although PLT ↓

PLT ↓, However…
IMG processing time ↑ due to decompression
Energy of the Page Load

- Reducing PLT may not imply reducing energy
 - While PLT depends on the critical path
 - Energy depends on all page load activities

- To estimate the Web energy, we need to:
 - evaluate the energy of entire page load
 - analyze the energy for each individual component
Problem Statement
Problem Statement

1. Can we get quick, accurate power and energy estimations for mobile page loads?
Problem Statement

1. Can we get quick, accurate power and energy estimations for mobile page loads?

2. Is it possible to provide visibility into both how and why Web page enhancements affect energy consumption?
Existing Solutions

• Power Monitors:
 - Measures power consumption accurately
Existing Solutions

• Power Monitors:
 - Measures power consumption accurately
 - But only report *aggregate power*
 - The *energy bottlenecks remain hidden*
Existing Solutions

• **Power Monitors:**
 - Measures power consumption accurately
 - But only report *aggregate power*
 - The *energy bottlenecks remain hidden*

• **Power Modeling**
 - Infers relationship between power and system stats
Existing Solutions

• **Power Monitors:**
 - Measures power consumption accurately
 - But only report **aggregate power**
 - The **energy bottlenecks remain hidden**

• **Power Modeling**
 - Infers relationship between power and system stats

\[P(CPU) = \beta \times CPU_{\text{util}} \]
Existing Solutions

• **Power Monitors:**
 - Measures power consumption accurately
 - But only report **aggregate power**
 - The **energy bottlenecks remain hidden**

• **Power Modeling**
 - Infers relationship between power and system stats
 \[P(CPU) = \beta \times CPU_{util} \]
 - However, they are not sufficient for mobile Web browsing…
Challenges (1/3)

1. Transcience
 - The page load process is short-lived
Challenges (1/3)

1. Transcience
 - The page load process is *short-lived*
 - For resource-based power models
 - Need **extremely fine-grained** resource logging to get enough data
Challenges (1/3)

1. Transcience
 - The page load process is **short-lived**
 - For resource-based power models
 - Need **extremely fine-grained** resource logging to get enough data
 - Frequent resource logging incurs **huge** overhead
 - CPU overhead 30% at 100Hz logging
2. Complexity

- A web page consists of many components
Challenges (2/3)

2. Complexity

- A web page consists of many components
- Difficult to tease out the energy effects of specific page load activities
Challenges (2/3)

2. Complexity

- A web page consists of many components
- Difficult to tease out the energy effects of
 - Specific page load activities
 - Web optimizations

How will the power change if all images are cached?

(a) Component level decomposition of loading instagram.com

(b) Power consumption corresponding to the load
Challenges (3/3)

3. Variance

- Energy and PLT can vary significantly when loaded under the same conditions repeatedly.
3. Variance

- Energy and PLT can vary significantly when loaded under the same conditions repeatedly.
 - Example: Three runs of answers.yahoo.com

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLT(s)</td>
<td>3.9</td>
<td>3.5</td>
<td>2.8</td>
</tr>
<tr>
<td>Energy(J)</td>
<td>12.5</td>
<td>11.8</td>
<td>9.2</td>
</tr>
</tbody>
</table>
Challenges (3/3)

3. Variance

- Energy and PLT can vary significantly when loaded under the same conditions repeatedly.
 - Example: Three runs of answers.yahoo.com

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLT(s)</td>
<td>3.9</td>
<td>3.5</td>
<td>2.8</td>
</tr>
<tr>
<td>Energy(J)</td>
<td>12.5</td>
<td>11.8</td>
<td>9.2</td>
</tr>
</tbody>
</table>

- Difficult to estimate the power consumption of a Web page load simply by referring to previous page loads.
3. Variance

- Energy and PLT can vary significantly when loaded under the same conditions repeatedly.
 - Example: Three runs of answers.yahoo.com

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLT(s)</td>
<td>3.9</td>
<td>3.5</td>
<td>2.8</td>
</tr>
<tr>
<td>Energy(J)</td>
<td>12.5</td>
<td>11.8</td>
<td>9.2</td>
</tr>
</tbody>
</table>

- Difficult to estimate the power consumption of a Web page load simply by referring to previous page loads.
- Thus, we focus on power per page load instantiation.
Outline

- RECON
 - Idea
 - Power Model
 - Training & Testing

- Evaluation & Results
- Application
- Conclusion
High-Level Idea

• Idea: Resource Monitoring + App Semantics
High-Level Idea

• Idea: Resource Monitoring + App Semantics
 - Coarse-grained resource monitoring (10/sec; 2% overhead)
High-Level Idea

• Idea: Resource Monitoring + App Semantics
 - Coarse-grained resource monitoring (10/sec; 2% overhead)
 - Augmented by low-level page load semantics from WProf-M
High-Level Idea

- Idea: Resource Monitoring + App Semantics
 - Coarse-grained resource monitoring (10/sec; 2% overhead)
 - Augmented by low-level page load semantics from WProf-M
High-Level Idea

- **Idea:** Resource Monitoring + App Semantics
 - Coarse-grained resource monitoring (10/sec; 2% overhead)
 - Augmented by low-level page load semantics from WProf-M

Component Data
- Component type
- Component time

Resource Data
- CPU util/freq
- Bytes sent/recv

RECON
- REsource- and COMpoNent-based modeling
Segmentation

- How to match resource with component information
Segmentation

• How to match resource with component information
 - Breakdown the page load process into segments
Segmentation

- How to match resource with component information
 - Breakdown the page load process into segments
 - Within each segment:
 ▶ Collect component info
 ▶ Compute avg resource use
Segmentation

• How to match resource with component information
 - Breakdown the page load process into segments
 - Within each segment:
 ‣ Collect component info
 ‣ Compute avg resource use

• RECON
 - Segment level power modeling
Linear Regression Model

• Weighted Linear combination

\[P_s = \alpha + \sum_{i \in \text{Resources}} \beta_i R_i + \sum_{j \in C_s} \gamma_j F_j, \]

- Specifically, for each segment
Linear Regression Model

- Weighted Linear combination

\[P_s = \alpha + \sum_{i \in \text{Resources}} \beta_i R_i + \sum_{j \in C_s} \gamma_j F_j, \]

- Specifically, for each segment
 - \(P_s \) (Average power consumption of segment \(s \))

Using a power monitor to get \(P_s \) just for building the model
Linear Regression Model

- Weighted Linear combination

\[P_s = \alpha + \sum_{i \in \text{Resources}} \beta_i R_i + \sum_{j \in C_s} \gamma_j F_j, \]

- Specifically, for each segment
 - \(P_s \) (Average power consumption of segment \(s \))
 - \(R_i \) (Resource Usage: CPU %, bytes rx/tx, …)

Using a power monitor to get \(P_s \) just for building the model
Linear Regression Model

- Weighted Linear combination

\[P_s = \alpha + \sum_{i \in Resources} \beta_i R_i + \sum_{j \in C_s} \gamma_j F_j, \]

- Specifically, for each segment
 - \(P_s \) (Average power consumption of segment \(s \))
 - \(R_i \) (Resource Usage: CPU %, bytes rx/tx, …)
 - \(F_j \) (Frequency of Component: EvalHtml, …)

Using a power monitor to get \(P_s \) just for building the model.
Linear Regression Model

• Weighted Linear combination

\[P_s = \alpha + \sum_{i \in \text{Resources}} \beta_i R_i + \sum_{j \in C_s} \gamma_j F_j, \]

- Specifically, for each segment
 • \(P_s \) (Average power consumption of segment \(s \))
 • \(R_i \) (Resource Usage: CPU %, bytes rx/tx, …)
 • \(F_j \) (Frequency of Component: EvalHtml, …)
 • \(\alpha, \beta_i, \gamma_j \) (Weights)

Using a power monitor to get \(P_s \) just for building the model
Linear Regression Model

• Weighted Linear combination

\[P_s = \alpha + \sum_{i \in \text{Resources}} \beta_i R_i + \sum_{j \in C_s} \gamma_j F_j, \]

- Specifically, for each segment
 - \(P_s \) (Average power consumption of segment \(s \))
 - \(R_i \) (Resource Usage: CPU %, bytes rx/tx, …)
 - \(F_j \) (Frequency of Component: EvalHtml, …)
 - \(\alpha, \beta_i, \gamma_j \) (Weights)

- Measure: \(P_s, R_i, F_j \)
- To Derive unknown \(\alpha, \beta_i, \gamma_j \):
 - Use multiple linear regression

Using a power monitor to get \(P_s \) just for building the model
Neural Network Model

- Detect non-linear relationships:

\[
P_s = y_0 + \sum_{k=1}^{m} y_k \left(1 + \exp\left(-(x_k + \sum_{i \in Res} \theta_{k,i} R_i + \sum_{j \in C_s} \phi_{k,j} F_j) \right) \right)^{-1}
\]
Neural Network Model

• Detect non-linear relationships:

\[P_s = y_0 + \sum_{k=1}^{m} y_k \left(1 + \exp \left(-(x_k + \sum_{i \in Res} \theta_{k,i} R_i + \sum_{j \in C_s} \phi_{k,j} F_j) \right) \right)^{-1} \]

• Trade-off
 - LR: fast | simple — 2 seconds for 4-CV
 - NN: powerful | complicated, slow — 20 minutes for 1-CV
Model Building — LR

• Training
 - Randomly select 80 pages, pick 60 for training
 ‣ For each Web page, we run 10 times

\[
P_s = \alpha + \sum_{i \in \text{Resources}} \beta_i R_i + \sum_{j \in C_s} \gamma_j F_j,
\]
Model Building — LR

• Training
 - Randomly select 80 pages, pick 60 for training
 ‣ For each Web page, we run 10 times
 - Monitor P_s, R_i, F_j; derive $\alpha, \beta_i, \gamma_j$

\[
P_s = \alpha + \sum_{i \in \text{Resources}} \beta_i R_i + \sum_{j \in C_s} \gamma_j F_j,
\]
Model Building — LR

- **Training**
 - Randomly select 80 pages, pick 60 for training
 - For each Web page, we run 10 times
 - Monitor P_s, R_i, F_j; derive $\alpha, \beta_i, \gamma_j$

$$P_s = \alpha + \sum_{i \in \text{Resources}} \beta_i R_i + \sum_{j \in C_s} \gamma_j F_j,$$

- **Testing**
 - Test on the remaining 20 pages
 - 10 runs per page
Model Building — LR

• Training
 - Randomly select 80 pages, pick 60 for training
 ‣ For each Web page, we run 10 times
 - Monitor P_s, R_i, F_j; derive $\alpha, \beta_i, \gamma_j$
 \[P_s = \alpha + \sum_{i \in \text{Resources}} \beta_i R_i + \sum_{j \in C_s} \gamma_j F_j, \]

• Testing
 - Test on the remaining 20 pages
 ‣ 10 runs per page
 - Monitor R_i, F_j; estimate \hat{P}_s using weighted linear summation
Model Building — LR

• Training
 - Randomly select 80 pages, pick 60 for training
 ‣ For each Web page, we run 10 times
 - Monitor P_s, R_i, F_j; derive $\alpha, \beta_i, \gamma_j$
 \[
 P_s = \alpha + \sum_{i \in Resources} \beta_i R_i + \sum_{j \in C_s} \gamma_j F_j.
 \]

• Testing
 - Test on the remaining 20 pages
 ‣ 10 runs per page
 - Monitor R_i, F_j; estimate \hat{P}_s using weighted linear summation

• Experiment on 3 devices:
 - Samsung Galaxy S4, S5, Nexus
 - Device-specific weights
Outline

• RECON

• Evaluation & Results
 - Mean Error
 - RECON Error CDF & Different devices

• Application

• Conclusion
Mean Error < 7%

- Webpage-level Estimation (Galaxy S4)
Mean Error < 7%

- Webpage-level Estimation (Galaxy S4)
 - Average estimation error 6.3% across 80 Web pages (4-fold CV)
 - NN reduces the error to 5.4%.

![Graph showing modeling error over web pages]

- LR error: 6.29%
- NN error: 5.40%
Mean Error < 7%

- Webpage-level Estimation (Galaxy S4)
 - Average estimation error 6.3% across 80 Web pages (4-fold CV)
 ‣ NN reduces the error to 5.4%.
Error CDF

- RECON Error CDF
Error CDF

• RECON Error CDF
 - The CDF shows the energy estimation errors across all runs of all 80 Web pages. We see that 80% of the errors are below 10%.
The CDF shows the energy estimation errors across all runs of all 80 Web pages. We see that 80% of the errors are below 10%.
Error CDF

- RECON Error CDF
 - The CDF shows the energy estimation errors across all runs of all 80 Web pages. We see that 80% of the errors are below 10%.
Segment Error

- **Fine-grained** power estimation
 - Based on segments

Segment error 7.8% for yelp.com

Segment error 9.7% for sfr.fr
Outline

• RECON
• Evaluation & Results

• Application
 - Analyze Web enhancements’ non-intuitive energy behaviors
 - Two case studies
 ▶ Caching
 ▶ Compression

• Conclusion
Case 1: Caching

- How will PLT and Energy change due to caching?
Case 1: Caching

- How will PLT and Energy change due to caching?

Most cached objects are downloads

Most Disappear

EvalHTML

Image

JavaScript

CSS
Case 1: Caching

• How will PLT and Energy change due to caching?

<table>
<thead>
<tr>
<th></th>
<th>PLT(s)</th>
<th>Energy(J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>2.5</td>
<td>8.2</td>
</tr>
<tr>
<td>Cached</td>
<td>2.1</td>
<td>5.7</td>
</tr>
<tr>
<td>Reduce%</td>
<td>16%</td>
<td>30%</td>
</tr>
</tbody>
</table>

Energy Reduction \(\approx 2\times\) PLT Reduction

Most cached objects are downloads

Most Disappear

EvalHTML

JavaScript

CSS

Image
Case 1: Caching

- How will PLT and Energy change due to caching?

<table>
<thead>
<tr>
<th></th>
<th>PLT(s)</th>
<th>Energy(J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>2.5</td>
<td>8.2</td>
</tr>
<tr>
<td>Cached</td>
<td>2.1</td>
<td>5.7</td>
</tr>
<tr>
<td>Reduce%</td>
<td>16%</td>
<td>30%</td>
</tr>
</tbody>
</table>

Energy Reduction \(\approx 2 \times\) PLT Reduction

Most not on critical path!

Most cached objects are downloads
Case 1: Caching

- How will PLT and Energy change due to caching?

<table>
<thead>
<tr>
<th></th>
<th>PLT(s)</th>
<th>Energy(J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>2.5</td>
<td>8.2</td>
</tr>
<tr>
<td>Cached</td>
<td>2.1</td>
<td>5.7</td>
</tr>
<tr>
<td>Reduce%</td>
<td>16%</td>
<td>30%</td>
</tr>
</tbody>
</table>

Energy Reduction ~ 2X PLT Reduction

Most cached objects are downloads

Most not on critical path!
But, they affect energy.
Case 1: Caching

- How will PLT and Energy change due to caching?

<table>
<thead>
<tr>
<th></th>
<th>PLT(s)</th>
<th>Energy(J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>2.5</td>
<td>8.2</td>
</tr>
<tr>
<td>Cached</td>
<td>2.1</td>
<td>5.7</td>
</tr>
<tr>
<td>Reduce%</td>
<td>16%</td>
<td>30%</td>
</tr>
</tbody>
</table>

Energy Reduction $\approx 2 \times$ PLT Reduction

RECON: Energy for Downloads reduces by 81%!
Case 2: Gzip Compression

- Compression level ranges from 1 to 9 (NGINX)
 - lv.9 is the highest compression level
Case 2: Gzip Compression

- Compression level ranges from 1 to 9 (NGINX)
 - lv.9 is the highest compression level

irs.gov under compression level 1

irs.gov under compression level 9

JS: 250->500ms
CSS: 200->700ms
Case 2: Gzip Compression

- Compression level ranges from 1 to 9 (NGINX)
 - lv.9 is the highest compression level
 - Lower compression level provides more benefits!

<table>
<thead>
<tr>
<th></th>
<th>PLT ↓</th>
<th>Energy ↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>78%</td>
<td>75%</td>
</tr>
<tr>
<td>Level 9</td>
<td>47%</td>
<td>39%</td>
</tr>
</tbody>
</table>

irs.gov under compression level 1

- JavaScript: 250->500ms
- CSS: 200->700ms

irs.gov under compression level 9

- JavaScript: 250->500ms
- CSS: 200->700ms
Case 2: Gzip Compression

- Compression level ranges from 1 to 9 (NGINX)
 - lv.9 is the highest compression level
 - Lower compression level provides more benefits!

<table>
<thead>
<tr>
<th>Level</th>
<th>PLT ↓</th>
<th>Energy ↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>78%</td>
<td>75%</td>
</tr>
<tr>
<td>Level 9</td>
<td>47%</td>
<td>39%</td>
</tr>
</tbody>
</table>

RECON: 37% more CPU energy due to CSS and Javascript decompression

irs.gov under compression level 1

irs.gov under compression level 9

Longer Decompression
Outline

• RECON

• Evaluation & Results

• Application

• Conclusion
Conclusion

• Web performance critical
 - Overlook energy
 - Mobile devices are constrained by energy

• We present RECON
 - Leverages page load semantics and resource-level information
 - Less than 7% error across 80 webpages.
 - Enables evaluating the energy effects of Web optimizations
Conclusion

• Web performance critical
 - Overlook energy
 - Mobile devices are constrained by energy

• We present RECON
 - Leverages page load semantics and resource-level information
 - Less than 7% error across 80 webpages.
 - Enables evaluating the energy effects of Web optimizations

• Thank you!